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ABSTRACT

The likelihood of a crash or crash potentiad is significantly affected by short-term
turbulence of traffic flow. For this reason, crash potential must be estimated on a real-time basis
by monitoring the current traffic condition. In this regard, a probabilistic real-time crash prediction
model relating crash potential to various traffic flow characteristics which lead to crash
occurrence, or “crash precursors’, was developed. However, several assumptions were made in
the development of this previous model that had not been clearly verified from ether theoretical
or empirical perspectives. Therefore, the objective of this study is to (1) suggest the rationa
methods by which crash precursors included in the model can be determined on the basis of
experimental results;, and (2) test the performance of the modified crash prediction model. The
study found that crash precursors can be determined in an objective manner eliminating a
characteristic of the previous model that the model results were dependent on analysts' subjective
categorization of crash precursors.
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INTRODUCTION

In improving traffic safety on freeways, proactively preventing vehicle crashes may have much
greater benefits than minimizing the consequences once a crash has occurred. In this paper, a
crash is defined as an accident involving a vehicle collision. To implement crash prevention, it is
necessary that the future occurrence of a crash can be anticipated on the basis of hazardous traffic
flow conditions that are present prior to the occurrence of the crash. According to the National
Academy of Engineering (1), precursors are “signas that illuminate system failure points with
potential for future catastrophic loss’. Precursors have been investigated to project future
calamities and mitigate future risk exposure in many study areas — e.g. prediction of stock market
crash in finance, prediction of the occurrence of earthquakes in geology, etc. In a similar manner,
this study refers to the traffic conditions that exist prior to the occurrence of vehicle crashes as
“crash precursors’.

The identification of crash precursors from current traffic flow conditions is very
important to predict the variation of crash potential over time and to establish real-time crash
countermeasures to avoid the hazardous traffic condition leading to crashes. In this study, the
term “crash potential” refers to the long-term likelihood that a crash will occur for given traffic,
environment, and roadway conditions. Since crash potential is affected by many time-dependent
factors including weather condition and the variation of traffic flow, crash potential varies over
time and therefore should be estimated in real time.

To reduce time-varying crash potential, most researchers have focused on timely detection
of incidents. However, incident detection algorithms are unable to prevent the occurrence of
primary crashes athough they may help in reducing secondary crashes. Despite this inherent
limitation of incident detection algorithm, a great deal of effort has been invested in developing
these algorithms and much less effort invested methods in real-time crash prevention.

In real-time crash prevention, crash precursors based on real-time traffic measures are
used to quantify crash potential. However, due to lack of real-time datain the past, most existing
crash prediction models were not able to account for crash precursors in the prediction of crash
occurrence. Instead, these models have used non-real-time and capacity-driven measures of traffic
flow such as Average Annua Dalily Traffic (AADT). Consequently, these models may be valuable
for examining static, infrastructure based crash reduction measures such as paved shoulders,
median barriers, etc. However, they are not helpful for evaluating the effect of real-time
intervention measures such as those associated with Intelligent Transportation Systems (ITS)
Advanced Traffic Management System (ATMS) concepts and services (2). Therefore, there is a
need to develop a crash prediction model that estimates the variation of crash potential and
enables us to evaluate the safety benefits of real-time crash prevention.

In this regard, we have identified a number of important crash precursors and developed a
probabilistic rea-time crash prediction model in our preliminary study (3). While this previous
work demonstrated that a statistically significant real-time crash prediction model was possible, a
number of assumptions were made in the development of this mode. In particular, the
assumptions were made with respect to the time duration over which the precursors were
calculated and the categorization of the precursor variables. Thus, this study has the following
objectives: 1) to suggest the rationa method by which precursor categorization and observation
time period duration can be determined; and 2) to test the performance of the modified crash
prediction model.
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This paper is organized into five sections. The second section reviews the past studies on
crash precursors and real-time crash prediction model. The third section explains crash precursors
and the structure of the proposed model. The fourth section suggests the methods to determine
crash precursors in the model using real traffic flow data and evaluates the performance of the
model. Finaly, the fifth section discusses the findings from the results and recommends future
work.

REVIEWS OF PREVIOUS STUDIES

By far, most studies of crash precursors have focused on the behavior of individua vehicles. For
example, Krishnan et a. (4) clamed that braking capability of cars, response time of drivers,
speed of cars, type of cars and mass of cars are important factors affecting crashes. They used
these factors as criteria for designing their rear-end collison-warning system. Smith et a. (5)
suggested that the headway of cars and the variation of headway have maor impact on crash
potential. They classified the crash risk into four levels according to these two factors. However,
their results are based on the experiments for the selected driver group and it is uncertain that the
defined risk levels are generally applicable to different driver groups. Furthermore, it appears that
as a result of many other factors which cannot be easily measured — e.g. driver’s characteristics,
driving state, vehicle characteristics, etc, developing a general relationship using this approach is
likely very difficult.

It may be advantageous to identify more aggregated relationship between crash potentia
and the “collective” behavior of individual drivers — i.e. traffic flow characteristics. There are a
few studies that have presented statistical links between real-time traffic flow conditions prior to
crash occurrence and crash potential.

Oh et a. (6) found that the standard deviation of speed 5 minutes prior to crash
occurrence is the best indicator that distinguishes disruptive conditions (conditions leading to
crash occurrence) from normal conditions using loop detector data of a freeway section in
California. Using this indicator, they developed probability density functions to estimate whether
the current traffic condition belongs to either norma or disruptive traffic conditions. They
concluded that reducing the variation in speed generally reduces the likelihood of freeway crashes.

Despite their innovative approach, the study displays some limitations. First, only a single
measure of traffic performance (standard deviation of speed) was used to predict the crash
likelihood. Since crashes normally occur as a result of complex interaction of many traffic and
environmental factors, it is questionable whether the single variable can sufficiently explain a
broad spectrum of pre-crash conditions. Second, the measure of crash likelihood estimated from
probability density function overlooked such exposures as volume, distance of travel and so on.
To control for these external conditions, the variation of exposures over space and time must be
taken into account in the probability density function.

Similar to this study, Kirchsteiger (7) described the distribution of accident precursorsin
generalized probability function such as the Gamma distribution. Although his study used
industrial accident database instead of traffic accident data, his approach is very similar to the
study of traffic accidents. In particular, he suggested that frequency of accidents in the
observation time period is described as the product of two frequencies: 1) frequency of precursor
and 2) conditional frequency of accident, given a precursor.
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In a recent approach, Lee et a. (3) proposed a probabilistic crash prediction model using
13 months of loop detector data from an urban freeway in Toronto. The details of this model are
explained in the next section. However, the model aso displays some limitations. First, the
determination of precursor factors is subjective. The model makes an assumption that the traffic
factors 5 minutes prior to crash occurrence are important athough it is uncertain whether 5
minutes are the most desirable observation time period. Second, the model uses a number of
categorical variables but the study does not clearly explain how to choose the optima number of
categories and the boundary values of each category. Findly, the study fails to show if the model
is robust for any categorization of precursors, and that the model performance is not sensitive to
different boundary values that are determined subjectively. This paper addresses these issues.

STRUCTURE OF PROPOSED MODEL

This study uses rea-time traffic flow characteristics to explain the effect of traffic performance on
crash occurrence. These characteristics are reflected by crash precursors. However, to explain the
exclusve effect of crash precursors, crash frequency should be controlled for external factors.
These external factors include road geometry and time of day (or level of congestion) which have
been commonly used in the past crash prediction models. It has been logically and empiricaly
proved that these factors have significant impacts on crash occurrence in the past studies. Also,
exposure measures should be combined with crash data so that the effects of various freeway and
traffic elements on crash potential can be explicitly compared within or between classifications of
interest (8). Similar to most other crash prediction models, the proposed model expresses crash
frequency as afunction of avariety of traffic and environmental characteristics as follows:

Crash frequency = f (crash precursors, externa control factors, exposure)

Using this functiona relationship, the model is caibrated using actual crash data and the effects of
crash precursors on crash potential can be examined. In the next subsections, the calculation of
crash precursors in the above function and the model specification are described.

Specification of Crash Precursors

In our previous study (3), we identified three crash precursors representing the traffic flow
conditions prior to the crash occurrence: (1) the average variation of speed on each lane (CVS);
(2) the average variation of speed difference across adjacent lanes (CVS;); and (3) traffic density
(D). Variation of speed is measured by the coefficient of variation of speed (CVS) (= standard
deviation of speed / average speed) computed over the given observation time dice duration. The
mathematical expression of these three precursorsis described in Lee et a.(3).

CVS, was formulated as a surrogate measure of lane change behavior in the assumption
that lane changing tends to increase crash potential. However, in spite of its statistical significance
in previous study, this current study found that CVS, does not have a direct impact on crash
potential because there was no significant difference in its values calculated for crash cases and
non-crash cases. The details of the comparison between crash and non-crash cases are explained
in the next section. Therefore, CVS, was eliminated from the model. Since only one variation of
speed is used in the model, CVS, isre-named as CVS,
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In addition to the existing crash precursors, CVS and D, we considered a new crash
precursor to reflect the impact of a traffic queue on crash occurrence by taking into account the
difference of speeds at upstream and downstream ends of road sections. The underlying principle
of this variable is that as the difference in speed increases, there is more abrupt change in traffic
within the road section — i.e. queue formation or dissipation. For example, if the speed at the
downstream end is significantly lower than the speed at the upstream end for a prolonged time
period, a taill of a queue is believed to be somewhere within the section. Conversely, relatively
high speed at the downstream end indicates the dissipation of a queue. In either case, drivers are
required to react promptly to adjust their speed and these conditions are likely to increase crash
potential. This additional precursor (Q) can be expressed by Equation 1.

t, § &1 & 0 t, § e @ '
Q=5-5/=|2 a c—ass®i- = a &—as): @
| | Dt e o @M iz g Db méNe iz s
where,

Q : average speed difference between upstream and downstream ends of road section
(km/hr);
S;,S, : average speed computed over period of Dt at upstream and downstream ends of
road section, respectively (km/hour);
t, :timeinterval of observation of speed (seconds);
Dt : observation time dice duration (seconds);
t* :actua time of crash occurrence;
S; (t) :speedonlanei at timet at upstream end of road section (km/hour);

S, (t) :speedonlanei at timet at downstream end of road section (km/hour);
N, N, : number of lanes at upstream and downstream of road section, respectively.

To illustrate the property of this new crash precursor, Equation 1 is applied to a section of
the Gardiner Expressway in Toronto, Canada for a 24-hour period. Q is calculated at every 20-
second interval with Dt assumed to be 2 minutes. As shown in Figure 1, Q clearly shows the
pattern of typical queue formation and dissipation in daily traffic. Particularly, Q characterizes
high chances of queue propagation during afternoon peak period. On the other hand, Q is
generaly small and constant during non-peak period when a queue is highly unlikely to form.

Exposure

As explained in the model structure, exposure is included to reflect frequency of traffic events that
create chances of crash occurrence. In this study, exposure is described as the product of daily
traffic volume and the length of each road section. These are split into the volume-kilometers
according to the probabilities of occurrence of crash precursor values and externa control factors
in daily traffic. However, the weather was excluded in external control factors since the available
weather data do not adequately reflect the actual weather condition at the time of crashes.
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By definition, crash rate is crash frequency divided by exposure. Thus, exposure must be
determined for a given crash frequency. This means that individua crashes are classfied into
generadized crash types based on their common characteristics. In this study, the crash types are
characterized by typical traffic conditions when crashes occurred, such as (1) crash precursor
values prior to crash occurrence; (2) congestion level (peak/off-peak period) at the time of
crashes; and (3) road section type (straight section or merge/diverge section), traffic volume, and
length of road section type where crashes occurred. For the ease of determining the exposure for
given crash precursor values, precursors should be categorized into a number of discrete levels.
For this reason, precursors are expressed in categorica variables instead of continuous variables
in the model. For example, the exposure for crash type A can be estimated based on the levels of
crash precursors, road geometry and congestion level corresponding to crash type A as shown in
Equation 2.

EXPa = p(CV&)Xp(Da) Xp(Qa) P(Pa) ¥ak aX (2

where,
EXPa . exposure for crash type A;
CV&., Da, Qa:  :thelevelsof CVS D and Q for crash type A, respectively;
P(CVSY), p(Da), p(Qa) : probabilities of the occurrence (or proportions) of the levels
CVS,, Da and Qa in normal daily traffic, respectively;

p(Pa) . proportion of volume during peak/off-peak periods in normal
daily traffic;
Va . average annual daily traffic of the road section (vehicles/day) for
crash type A;
La - length of road section type (km) for crash type A;
T : total observation time period (number of days).

Model Specification

To analyze the effects of crash precursors and external control factors on crash potential, a
probabilistic model of crash prediction was developed. The model estimates the relationship
between crash frequency and the variables discussed in previous sections.

In this study, an aggregate log-linear model is developed since it alows us to investigate
the nature of the relationship between selected precursors and frequency of crashes adjusted by
the appropriate level of exposure. The log-linear modd in this study has only a limited number of
parameters instead of all possible parameters to achieve a parsimonious representation of the data.
In this analysis, afirst-order log-linear model of crash prediction was developed as follows.

As Jovanis and Chang (9) suggested, the multiplicative model has the following
advantages over the additive (linear) model; 1) it can describe a non-linear relationship between
mutualy independent variables and, 2) it can avoid the problem of negative-value prediction.
Thus, the crash rate can be described in the following functional form:
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F
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where,
F  :theexpected number of crashes over the analysis time frame;
EXP :the exposure in vehicle-kilometers of travel;

b : the parameter for the exposure;
q : constant;
| cvsgy - €ffect of the crash precursor variable CVShaving i levels
| ;) :effect of the crash precursor variable D having j levels;
| oa : effect of the crash precursor variable Q having k levels;
| rqy : €effect of road geometry (control factor) having | levels.
I

pem - €ffect of time of day (control factor) having mlevels;

It should be noted that crash precursors and external control factors are categorical
variables whereas exposure is continuous variable. To express the above equation in a linear
function of independent variables, the factors should be converted to logarithmic terms as follows:

- b = explg +1 cvsi) oy Taw 1 re +I P(m))
EXP

e F _
'”gEXPb Sd +1evsiy o) Hlow *1rey Tl em)

In(F) - bIN(EXP) =q +1 cysiy + 1 o(j) +1 oy 1 Ry +1 pmy

In(F) =q +1 cvsiy 1 o(j) 1 ow 1 rey T pmy + B IN(EXP) 4

To estimate the parameters in Equation 4, the model is calibrated for actual crash data
using the maximum likelihood estimate (MLE) method. The MLE method runs an iterative
process to fit the estimated data to the observed data. This fitting process continues until the
difference between the current and previous estimates converges to the pre-specified error level.

MODEL CALIBRATION

This section describes the data used for the calibration of the model and suggests the methods to
determine severa important parameters to calculate crash precursors such as 1) actual time of
crash, 2) observation time dice duration and 3) number of categories and boundary values for
each category of crash precursors.
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Description of Data

To calibrate the proposed model, this study used incident logs and traffic flow data extracted from
loop detectors along a 10-km stretch of the Gardiner Expressway in Toronto, Canada. A total of
38 loop detector stations are located along this stretch of freeway as shown in Figure 2. The data
were collected for weekdays over a 13-month period from January 1998 to January 1999. A total
of 234 crashes were confirmed by operators at the traffic control center on this section of the
roadway during the study period. The crashes on ramps were not considered because they are
likely to be more influenced by site-specific characteristics such as geometric design and traffic
operation (9).

Deter mination of Actual Time of Crash

In this study, the actual time of crash (t*) was estimated from the analysis of changes in detector
speed profiles. To illustrate the method of estimation, the change of speed on the road section
between two loop detectors upstream and downstream of the crash site is described on a time-
gpace diagram as shown in Figure 3.

The figure shows that before the crash occurs at the location marked by “X” between a
pair of loop detectors, al individua cars are assumed to travel at the speed in normal traffic
condition (s,) as indicated by arrows. After the crash occurs at “X” (separated by d* from
upstream detector) at time t*, the vehicles upstream of the crash site experience delays and their
speed suddenly drops to speed in the congested queue (s;) assuming that s, is uniform. On the
other hand, the speed of vehicles downstream of the crash site increases to s due to a decrease in
volume. As forward-moving shock wave (u) passes over the downstream detector at time ty and
backward-moving shock wave (w) passes over the upstream detector at time t,, the transition of
speed can be observed at the location of both detectors as shown in the two figures below the
time-space diagram.

From these figures, we observed that it was normally easier to detect t, than ty since there
were more noticeable changes in speed at upstream detector than downstream detector. This is
because the impact of a queue formed by lane blockages on traffic flow disruption is more severe
than the impact of the reduction in volume downstream of the crash site. Also since precursors
represent the traffic condition before vehicles reach the crash site, we need to observe the
condition immediately upstream of the crash site. Thus, t, was used as a surrogate measure of t*.

To evauate the accuracy of t, in estimating t*, the expected error caused by the travel
time of backward-moving shock wave ( =t, - t* ) can be calculated as follows. If the crashes are
likely to occur equally at any point of a road section having the length of n unit (i.e. the
probability of crash occurrence at any point is the same), the expected location of crashes is
estimated by Equation 5.

1+2+...+n
n
n(n+1) (5
2

= :n+1@g if nisvery large.
n 2 2

E[d*]:l’ 1unit+l’ 2unit+-~-+l’ nunit =
n n n
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Also, the past studies observed that the speed of backward-moving shock waves ranges
from 10 km/hr to 30 km/hr on urban freeways (10,11,12,13,14). In this study, the average speed
of backward-moving shock wave (W) is assumed to be 20 km/hr. For example, if the length of
the section is 500 meters which is a typical spacing of detectors on urban freeways, the expected
error (e) can be calculated as follows:

_E[d*] _05/2 _ 0.25km

e=Eft, -t*
-] Ew] W  20km/hour

=45 seconds (6)

Considering the fact that typical polling intervals of loop detectors are 20~30 seconds, the
expected errors are only 2~3 polling intervals. Due to relatively low expected errors, this study
assumes that the errors do not significantly affect the calculation of crash precursors and t, can be
used as a good estimate of t*.

Deter mination of Observation Time Slice Duration

In our previous study (3), observation time dice duration (Dt) prior to crash occurrence was
assumed to be 5 minutes. However, this duration was arbitrarily chosen on the basis of subjective
judgment and it was not obtained from empirical results. In this study, a more objective method
was developed to determine Dt. The premise of the method is that Dt should be chosen to
maximize the difference between precursor values calculated for crash cases and non-crash cases.
For the analysis, crash precursors (CVS D and Q) were calculated for the sample of 234 crash
cases and 234 non-crash cases. Non-crash cases contain the data collected at the same road
sections for the same time periods under the same weather condition as crash cases, but in
different days when crashes did not occur. In this way, other traffic environmental factors such as
road geometry, weather and typical traffic pattern are assumed to be controlled.

The objective of this analysis is to identify Dt which maximizes the difference in crash
precursor values between crash and non-crash cases. Total difference can be directly obtained
from the sum of absolute differences in precursor values between the two cases. However, since
the variation of speed (CVS) tends to increase with Dt, the “standardized” differences must be
used rather than absol ute differences. Consequently, the distributions of crash and non-crash cases
were compared based on the frequency of precursors for given ranges of precursor values. The
number of intervals within the given ranges were determined such that the frequency of precursors
is reasonably dispersed. The differences were calculated using the following expression:

d=4(f- 1) 7

=1

where,
d :differencein frequency of precursor values between crash and non-crash cases;
| :tota number of intervals within a given range;
fi, f' : frequency of precursor values for an interval i in crash and non-crash cases,

respectively.
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As aresult, it was found that the frequency differences in the three precursor variables (CVS D
and Q) between crash and non-crash cases were maximum a Dt = 8, 3 and 2 minutes,
respectively, as shown in Figure 4. This implies that the variation of speed (CVS) has relatively a
longer-term effect on crash potential than D and Q. Although it is uncertain whether the maximum
value identified within the range (1~20 minutes) actually represents a global maximum, it is hard
to believe that the traffic condition more than 20 minutes prior to crash occurrence has a
significant impact on crashes. Thus, the above-mentioned values were chosen as optimal
observation time dlice durations.

Categorization of Crash Precursors

In categorizing crash precursors, we need to define the level of crash precursors based on the
distribution of normal traffic flow condition in daily traffic. For this purpose, 24-hour traffic data
on two typical weekdays with clear weather condition when no crash has occurred was extracted
from loop detectors. As shown in Figure 5, the distribution of precursor values from the 24-hour
data is substantially different from that of the crash data. The figure shows that the frequency of
high crash precursor values was relatively higher in the crash data than the 24-hour data. This
implies that crash precursor values were relatively higher when crashes occurred compared to
when crashes did not occur. Also, it should be noted that the disparity between the distribution of
the 24-hour data and that of the crash data is much larger than the disparity between the two
distributions of the 24-hour data. This indicates that crash precursors are good indicators of
discriminating between crash and non-crash conditions.

In the categorization, the number of categories and the boundary values (or proportion of
each category) must be determined. However, it is difficult to determine these factors objectively
from the distribution of crash precursor values. Instead, the proposed log-linear model was
calibrated for different cases of categorization. Then, the performance of the calibrated log-linear
models was evaluated in terms of 1) overall mode fit, 2) the statistical significance of coefficients
and 3) consistency of coefficients with the order of levels of crash precursors. The categorization
that produced the best model performance was chosen as the most suitable categorization.

In this study, the number of categories considered varying from 2 to 4 inclusive. Asarule
of thumb, total number of cellsin alog-linear model is recommended to be less than the number
of samples used to calibrate the model. Therefore, given that the calibration sample consisted of
234 observations, more than 4 categories were not considered. For each number of categories (2,
3 or 4), boundary values for the precursor variables were selected to achieve the specified
proportions of crash precursors for each category in the 24-hour data under normal traffic
condition as shown in Table 1. In most cases, the proportion of the highest level was set lower
than all other lower levels in order to reflect rare occurrence of high-level precursors in normal
traffic conditions. These proportions will affect the calculation of both crash frequency and
exposure for each category as defined in Equation 2 and 3. Maximum likelihood estimates of the
expected crash frequency were obtained through an iterative proportional fitting technique.

As aresult, as the number of categories increases, both log-likelihood ratio and Pearson
chi-square statistics decrease, which means the model fits better. However, it should be noted that
this result stems from the fact that as the number of categories increases, the increased number of
zero cells in a contingency table has a more dominant effect on overall mode fit. But it is unclear
whether these zero cells actually reflect that no crash occurred under the given circumstances or
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they are the result of missing data. With this uncertainty, increasing the number of categories does
not necessarily produce a better model.

For this reason, the statistical significance and consistency of coefficients also need to be
checked. As a result, for 2 and 4 categories, some of the coefficients were insignificant and also
they were inconsistent with the order of levels. For instance, low-level precursor has more
positive impact on crash potentia than higher-level precursor. Only for 3 categories, were all the
coefficients statisticaly significant at a 95% confidence level and consistent with the order of
levels in al 9 cases as shown in Table 2. Also, log-likelihood ratio and Pearson chi-square
statistics were low, and p-values at a 95% confidence level were large. This means that thereis no
significant difference between observed and predicted crash frequency and therefore, the model
fits the observed data well. This result implies that the performance of the log-linear model is not
sensitive to our subjective categorization for fixed number of categories. Among 9 different cases
for 3 categories, it was found that the proportions of 50%(low)-30%(intermediate)-20%(high)
produced the best model fit (i.e. the lowest log-likelihood ratio and Pearson chi-square). The
boundary values for each crash precursor in this case are as follows as shown in Table 1. 0.056
and 0.074 for CVS, 16.4 and 25.8 veh/km for D; and 2.7 and 8.3 km/hr for Q.

In Table 2, lower coefficients indicate less impact on crash potential with respect to
dliased cdlls. This result suggests that higher-level crash precursors contribute to higher crash
potential than lower-level crash precursors. The control factors such as road geometry and time of
day also have significant effect on crash potential. The result indicates that crash is more likely to
occur on the road sections having on-ramp or off-ramp and during peak period. Findly, as
expected, crash potential increases with exposure.

CONCLUSIONSAND RECOMMENDATIONS

This paper suggests the rational methods by which crash precursors are determined from
experimental results and also evaluates the performance of the crash prediction model for different
assumptions of categorized crash precursors. The findings from this study are summarized as
follows:

1) The main criterion for selecting crash precursors is that the distribution of precursor values for
traffic conditions when crashes occurred should be significantly different from the distribution
of precursor values for normal traffic condition.

2) The difference between the speed at the upstream detector and the speed at the downstream
detector was significantly higher when crashes occurred. Thisimplies that the abrupt transition
of speed within the road section, i.e. the formation and dissipation of a traffic queue, has
positive effects on crash occurrence.

3) Thetime when the speed abruptly drops at the detector station immediately upstream of crash
gite is considered to be a good estimate of actual time of crashes. This speed drop occurs
when a queue forms after the crash occurrence and the backward-moving shock wave passes
over the nearest upstream detector station.
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4) The observation time dlice duration (Dt) prior to crash occurrence is determined such that the
difference in distribution of crash precursor values for given Dt between crash and non-crash
cases is maximized. It was found that the optimal observation time dice durations were
different for each selected crash precursor — i.e. some precursors need to be observed for
longer time period than other precursors to investigate their impact on crash occurrence.

5) The categorization of crash precursors is determined based on overal fit of crash prediction
model, the statistical significance of coefficients and consistency of coefficients with the order
of levels of crash precursors. In the analysis, three categories appear to be the most suitable to
explain differential impact of precursors in different levels on crash potential. In case of three
categories, the model estimates showed consistent results for any combination of boundary
values. Thus the performance of the model was stable, not being affected by subjective
categorization of crash precursors.

Having calibrated the model for historical crash data, the proposed model can be used to
predict crash potentia in real-time using the current traffic flow data. For the next step, we need
to apply this model to actual traffic condition and examine how the crash potential estimated by
the model can help reduce the crash potential and improve the safety of freeway traffic.

Since we can predict the crash potential on areal-time basis using the proposed model, we
can also implement the automated real-time countermeasures to reduce crash potential such as
variable speed limit. This certainly saves manual human intervention and effectively controls the
traffic flow to prevent crashes. For the systematic implementation of real-time countermeasures, it
is necessary to classify crash potentia into different levels of risk tolerance. For example, variable
speed limit is in operation only when the estimated real-time crash potential exceeds the specified
threshold value of risk tolerance.

Furthermore, we need to assess the safety benefit of an automated traffic control using the
proposed crash prediction model. For one thing, the simulation can be performed before and after
implementing the automated traffic control. From the simulation results, the impact of a changein
driver behavior caused by this external control on the variation of traffic flow and real-time crash
potential can be examined. This before-and-after study evaluates whether this automated traffic
control can effectively reduce the overall crash potential on freeways for given conditions.
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TABLE 1 Cases of Categorization and Boundary Values

No. of Assumed CVS D (veh/km) Q (km/hr)

Categories Proportions | Bl | B2" |[B3" |B1 B2 B3 B1 B2 B3

2 Categories 50/50 0.056 - -1 164 - - 2.7 - -
60/40 0.060 - -| 180 - - 35 - -
70/30 0.065 - -| 203 - - 47 - -
80/20 0.074 - -| 258 - - 8.3 - -

3 Categories 20/60/20 0.046 | 0.074 -| 132] 258 - 1.1 8.3 -
20/50/30 0.046 | 0.064 -| 132| 203 - 1.1 47 -
30/50/20 0.048 | 0.074 -| 142| 258 - 1.6 8.3 -
33/33/33 0.049 | 0.063 -| 145] 194 - 1.7 42 -
40/40/20 0.052 | 0.074 -| 152| 258 - 2.1 8.2 -
40/30/30 0.052 | 0.064 -| 152| 203 - 2.1 47 -
50/30/20 0.056 | 0.074 -| 164| 258 - 2.7 8.3 -
50/20/30 0.056 | 0.064 -| 164| 203 - 2.7 47 -
60/20/20 0.060 | 0.074 -| 180| 258 - 35 8.3 -

4 Categories 40/20/20/20 | 0.052 | 0.060 | 0.074| 152 | 180| 258 2.1 35 8.3
30/30/20/20 | 0.048 | 0.060 | 0.074 | 142| 180| 258 1.6 35 8.3
30/20/30/20 | 0.048 | 0.056 | 0.074| 142| 164 | 258 1.6 2.7 8.3
25/25/25/25 | 0.047 | 0.056 | 0.068 | 136| 164 | 223 1.3 2.7 5.9
20/20/40/20 | 0.046 | 0.052 | 0.074| 132| 152 | 258 1.1 2.1 8.3
20/30/30/20 | 0.046 | 0.056 | 0.074| 132| 164 | 258 1.1 2.7 8.3
20/40/20/20 | 0.046 | 0.060 | 0074 | 132| 180| 258 1.1 35 8.3

"The first number denotes the percentage of the lowest level, the second number the percentage of the second
lowest level, and so on.

""B1 denotes the boundary value between the lowest level and the second lowest level for given crash precursor, B2
the boundary value between the second lowest level and the third lowest level, and so on.

Sample Illustration:

For example, in the case of 3 categories, 20/60/20 indicates that when the crash precursor values are ordered from
the smallest to the largest, the first 20 percentile of crash precursor values represents “low” level, the next 60
percentile “intermediate” level and the remaining 20 percentile “high” level. The boundary values between “low”
and “intermediate” levels for CVS D and Q are 0.046, 13.2 and 1.1, respectively. The boundary values between
“intermediate” and “high” levels for CVS D and Q are 0.074, 25.8 and 8.3, respectively. Thus, the categories of
crash precursor values can be determined as follows:

Low level: CVS £0.046 D £132 Q£11
Intermediate level: 0.046 < CVSE£ 0.074 13.2<D£258 11<Q£83
High level: CVS >0.074 D >258 Q>83
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TABLE 2 Estimated Parametersof Log-linear Model (Three Categories)

Parameter Assumed Proportions (L ow/I nter mediate/High)

20/60/20 | 20/50/30 | 30/50/20 | 33/33/33 | A0/40/20 | 40/30/30 | 50/30/20 | 50/20/30 | 60/20/20
q 28920 | 3.0353| 29050 | 05366| 28272| 10898| 26569 | 25347| 28191
| over “4.9018 | -44238 | -3.2432| -2.8002 | -3.0481 | -36619 | -3.3065| -3.2087 | -2.3741
| oven 14274 | -2.3140 | -1.7207 | -1.7216 | -2.0652 | -1.9155 | -1.8415| -1.9522 | -1.7157
| cves™ 0 0 0 0 0 0 0 0 0
| ooy 13901 | -14572 | -1.4367 | -14831 | -1.7390 | -2.7063 | -2.3797 | -2.3627 | -0.9045
| pes 03733 | -1.7751| -05753| -1.1818 | -0.9418 | -1.1090 | -0.7088 | -0.8791 | -0.5833
| pog* 0 0 0 0 0 0 0 0 0
| omt 27247 | -25041 | -2.1406 | -2.0095 | -2.1778 | -30160 | -2.6859 | -2.6107 | -1.6682
| gez -1.0554 | -2.2371| -1.3869 | -1.8993 | -1.7864 | -1.9362 | -1.4794 | -1.9960 | -1.4076
| od® 0 0 0 0 0 0 0 0 0
| nco “0.4171 | -0.8405 | -05613 | -2.7014 | -0.9062 | -2.5029 | -0.9916 | -1.1961 | -0.4728
| et 0 0 0 0 0 0 0 0 0
| oo ~0.4604 | 05777 | -0.4877 | -1.0353 | -0.5468 | -0.9743 | -0.4929 | -0.6406 | -0.4368
| peg* 0 0 0 0 0 0 0 0 0
b
i‘ﬁ%‘;’s\‘;ﬁ_ 00075 | 00367 | 00228| 01502| 00710 | 01715| 00964 | 00682| 00171
km)
;ﬁ%‘ hood 87.4 62.9 85.7 57.2 62.8 54.6 445 66.6 | 106.27
p-value 0.77 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.27
(a=0.05)

" This cell serves as the basis against which log-linear parameters are applied to obtain crash frequency for any
combination of crash precursors. The cell is called the “aliased” cell.

Description of Parameters:

g : Constant;

| cvse1, | ovesos | cvss: Effect of CVS (=1 (lOW), =2 (l ntermediate), =3 (hlgh)),

| p=1, | p=2, | p=3,: Effect of D (=1 (low), =2 (intermediate), =3 (high));

| o=1, | g=2, | o=3: Effect of Q (=1 (low), =2 (intermediate), =3 (high));

| R0, | R=1: Effect of road geometry (=0 (straight section), =1 (merge/diverge section));
| p=o, | p=1: Effect of time of day (=0 (off-peak), =1 (peak));

b : Coefficient for exposure.

Sample Calculation:

At current time t* (during peak period), if CVS(t*) = 0.04, D(t*) = 10 veh/km, and Q(t*) = 1 km/hr, then the crash
potential on the merge road section with exposure of 1° 10° vehicles-km of travels over a 13-month period can be
estimated as follows:

If the proportions of crash precursors are assumed to be 20/60/20, categories for CVS D, and Q are 1 (low level) as
the values above are lower than the boundary values between low level and intermediate level.

F(t*) =exp(@ + | cys1+ | p=1+ | =1+ | ret + | poat DAN(EXP))
= exp(2.8920 — 4.9018 — 1.3901 — 2.7247 + 0 + 0 + 0.00754n(1)) = 2.2 * 10° crashes

Crash Potential (t*) = F(t*) / EXP=2.2" 10°%/10°=2.2" 10™ crashes/veh-km.



Lee, Hellinga, and Saccomanno 18

50
45 +
40 -
35 4
30 -
O 25
20 -
15 4
10 -
b
o Tyl ATl it | L AR Lo AR
O o © ¥ d4 ® © M O N © ¥ L N O © ™ O N~
© 1 1 W ;v I I < m M M O O m ;v W b <
6 © N 86 & &6 <4 & M < b & ®@ & & & 4 N O
— — — — — — — — — — N N N N
Time

FIGURE 1 Profile of queue formation precursor (Q) in typical daily traffic.
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FIGURE 2 Location of loop detector stationson Gardiner Expressway.
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FIGURE 3 Illustration of speed changes after crash occurrence.
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FIGURE 5 Distribution of crash precursorsin two 24-hour data and crash data.



