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ABSTRACT  

The likelihood of a crash or crash potential is significantly affected by short-term 
turbulence of traffic flow. For this reason, crash potential must be estimated on a real-time basis 
by monitoring the current traffic condition. In this regard, a probabilistic real-time crash prediction 
model relating crash potential to various traffic flow characteristics which lead to crash 
occurrence, or “crash precursors”, was developed. However, several assumptions were made in 
the development of this previous model that had not been clearly verified from either theoretical 
or empirical perspectives. Therefore, the objective of this study is to (1) suggest the rational 
methods by which crash precursors included in the model can be determined on the basis of 
experimental results; and (2) test the performance of the modified crash prediction model. The 
study found that crash precursors can be determined in an objective manner eliminating a 
characteristic of the previous model that the model results were dependent on analysts’ subjective 
categorization of crash precursors. 
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INTRODUCTION 

In improving traffic safety on freeways, proactively preventing vehicle crashes may have much 
greater benefits than minimizing the consequences once a crash has occurred. In this paper, a 
crash is defined as an accident involving a vehicle collision. To implement crash prevention, it is 
necessary that the future occurrence of a crash can be anticipated on the basis of hazardous traffic 
flow conditions that are present prior to the occurrence of the crash. According to the National 
Academy of Engineering (1), precursors are “signals that illuminate system failure points with 
potential for future catastrophic loss”. Precursors have been investigated to project future 
calamities and mitigate future risk exposure in many study areas – e.g. prediction of stock market 
crash in finance, prediction of the occurrence of earthquakes in geology, etc. In a similar manner, 
this study refers to the traffic conditions that exist prior to the occurrence of vehicle crashes as 
“crash precursors”.  

The identification of crash precursors from current traffic flow conditions is very 
important to predict the variation of crash potential over time and to establish real-time crash 
countermeasures to avoid the hazardous traffic condition leading to crashes. In this study, the 
term “crash potential” refers to the long-term likelihood that a crash will occur for given traffic, 
environment, and roadway conditions. Since crash potential is affected by many time-dependent 
factors including weather condition and the variation of traffic flow, crash potential varies over 
time and therefore should be estimated in real time. 

To reduce time-varying crash potential, most researchers have focused on timely detection 
of incidents. However, incident detection algorithms are unable to prevent the occurrence of 
primary crashes although they may help in reducing secondary crashes. Despite this inherent 
limitation of incident detection algorithm, a great deal of effort has been invested in developing 
these algorithms and much less effort invested methods in real-time crash prevention.  

In real-time crash prevention, crash precursors based on real-time traffic measures are 
used to quantify crash potential. However, due to lack of real-time data in the past, most existing 
crash prediction models were not able to account for crash precursors in the prediction of crash 
occurrence. Instead, these models have used non-real-time and capacity-driven measures of traffic 
flow such as Average Annual Daily Traffic (AADT). Consequently, these models may be valuable 
for examining static, infrastructure based crash reduction measures such as paved shoulders, 
median barriers, etc. However, they are not helpful for evaluating the effect of real-time 
intervention measures such as those associated with Intelligent Transportation Systems (ITS) 
Advanced Traffic Management System (ATMS) concepts and services (2). Therefore, there is a 
need to develop a crash prediction model that estimates the variation of crash potential and 
enables us to evaluate the safety benefits of real-time crash prevention.  

In this regard, we have identified a number of important crash precursors and developed a 
probabilistic real-time crash prediction model in our preliminary study (3). While this previous 
work demonstrated that a statistically significant real-time crash prediction model was possible, a 
number of assumptions were made in the development of this model. In particular, the 
assumptions were made with respect to the time duration over which the precursors were 
calculated and the categorization of the precursor variables. Thus, this study has the following 
objectives: 1) to suggest the rational method by which precursor categorization and observation 
time period duration can be determined; and 2) to test the performance of the modified crash 
prediction model. 
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This paper is organized into five sections. The second section reviews the past studies on 
crash precursors and real-time crash prediction model. The third section explains crash precursors 
and the structure of the proposed model. The fourth section suggests the methods to determine 
crash precursors in the model using real traffic flow data and evaluates the performance of the 
model. Finally, the fifth section discusses the findings from the results and recommends future 
work. 

 
 

REVIEWS OF PREVIOUS STUDIES 

By far, most studies of crash precursors have focused on the behavior of individual vehicles. For 
example, Krishnan et al. (4) claimed that braking capability of cars, response time of drivers, 
speed of cars, type of cars and mass of cars are important factors affecting crashes. They used 
these factors as criteria for designing their rear-end collision-warning system. Smith et al. (5) 
suggested that the headway of cars and the variation of headway have major impact on crash 
potential. They classified the crash risk into four levels according to these two factors. However, 
their results are based on the experiments for the selected driver group and it is uncertain that the 
defined risk levels are generally applicable to different driver groups. Furthermore, it appears that 
as a result of many other factors which cannot be easily measured – e.g. driver’s characteristics, 
driving state, vehicle characteristics, etc, developing a general relationship using this approach is 
likely very difficult. 

It may be advantageous to identify more aggregated relationship between crash potential 
and the “collective” behavior of individual drivers – i.e. traffic flow characteristics. There are a 
few studies that have presented statistical links between real-time traffic flow conditions prior to 
crash occurrence and crash potential.  

Oh et al. (6) found that the standard deviation of speed 5 minutes prior to crash 
occurrence is the best indicator that distinguishes disruptive conditions (conditions leading to 
crash occurrence) from normal conditions using loop detector data of a freeway section in 
California. Using this indicator, they developed probability density functions to estimate whether 
the current traffic condition belongs to either normal or disruptive traffic conditions. They 
concluded that reducing the variation in speed generally reduces the likelihood of freeway crashes.  

Despite their innovative approach, the study displays some limitations. First, only a single 
measure of traffic performance (standard deviation of speed) was used to predict the crash 
likelihood. Since crashes normally occur as a result of complex interaction of many traffic and 
environmental factors, it is questionable whether the single variable can sufficiently explain a 
broad spectrum of pre-crash conditions. Second, the measure of crash likelihood estimated from 
probability density function overlooked such exposures as volume, distance of travel and so on. 
To control for these external conditions, the variation of exposures over space and time must be 
taken into account in the probability density function.  

Similar to this study, Kirchsteiger (7) described the distribution of accident precursors in 
generalized probability function such as the Gamma distribution. Although his study used 
industrial accident database instead of traffic accident data, his approach is very similar to the 
study of traffic accidents. In particular, he suggested that frequency of accidents in the 
observation time period is described as the product of two frequencies: 1) frequency of precursor 
and 2) conditional frequency of accident, given a precursor. 
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In a recent approach, Lee et al. (3) proposed a probabilistic crash prediction model using 
13 months of loop detector data from an urban freeway in Toronto. The details of this model are 
explained in the next section. However, the model also displays some limitations. First, the 
determination of precursor factors is subjective. The model makes an assumption that the traffic 
factors 5 minutes prior to crash occurrence are important although it is uncertain whether 5 
minutes are the most desirable observation time period. Second, the model uses a number of 
categorical variables but the study does not clearly explain how to choose the optimal number of 
categories and the boundary values of each category. Finally, the study fails to show if the model 
is robust for any categorization of precursors, and that the model performance is not sensitive to 
different boundary values that are determined subjectively. This paper addresses these issues. 

 
 

STRUCTURE OF PROPOSED MODEL 

This study uses real-time traffic flow characteristics to explain the effect of traffic performance on 
crash occurrence. These characteristics are reflected by crash precursors. However, to explain the 
exclusive effect of crash precursors, crash frequency should be controlled for external factors. 
These external factors include road geometry and time of day (or level of congestion) which have 
been commonly used in the past crash prediction models. It has been logically and empirically 
proved that these factors have significant impacts on crash occurrence in the past studies. Also, 
exposure measures should be combined with crash data so that the effects of various freeway and 
traffic elements on crash potential can be explicitly compared within or between classifications of 
interest (8). Similar to most other crash prediction models, the proposed model expresses crash 
frequency as a function of a variety of traffic and environmental characteristics as follows: 
  

Crash frequency = f (crash precursors, external control factors, exposure) 
 
Using this functional relationship, the model is calibrated using actual crash data and the effects of 
crash precursors on crash potential can be examined. In the next subsections, the calculation of 
crash precursors in the above function and the model specification are described. 
 
Specification of Crash Precursors 

In our previous study (3), we identified three crash precursors representing the traffic flow 
conditions prior to the crash occurrence: (1) the average variation of speed on each lane (CVS1); 
(2) the average variation of speed difference across adjacent lanes (CVS2); and (3) traffic density 
(D). Variation of speed is measured by the coefficient of variation of speed (CVS) (= standard 
deviation of speed / average speed) computed over the given observation time slice duration. The 
mathematical expression of these three precursors is described in Lee et al.(3).  

CVS2 was formulated as a surrogate measure of lane change behavior in the assumption 
that lane changing tends to increase crash potential. However, in spite of its statistical significance 
in previous study, this current study found that CVS2 does not have a direct impact on crash 
potential because there was no significant difference in its values calculated for crash cases and 
non-crash cases. The details of the comparison between crash and non-crash cases are explained 
in the next section. Therefore, CVS2 was eliminated from the model. Since only one variation of 
speed is used in the model, CVS1 is re-named as CVS. 
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In addition to the existing crash precursors, CVS and D, we considered a new crash 
precursor to reflect the impact of a traffic queue on crash occurrence by taking into account the 
difference of speeds at upstream and downstream ends of road sections. The underlying principle 
of this variable is that as the difference in speed increases, there is more abrupt change in traffic 
within the road section – i.e. queue formation or dissipation. For example, if the speed at the 
downstream end is significantly lower than the speed at the upstream end for a prolonged time 
period, a tail of a queue is believed to be somewhere within the section. Conversely, relatively 
high speed at the downstream end indicates the dissipation of a queue. In either case, drivers are 
required to react promptly to adjust their speed and these conditions are likely to increase crash 
potential. This additional precursor (Q) can be expressed by Equation 1.  
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where, 

   Q : average speed difference between upstream and downstream ends of road section 
(km/hr); 

21, ss  : average speed computed over period of t∆ at upstream and downstream ends of 
road section, respectively (km/hour); 

   tp    : time interval of observation of speed (seconds); 
  t∆    : observation time slice duration (seconds); 
  *t  : actual time of crash occurrence; 

)(1 ts i  : speed on lane i at time t at upstream end of road section (km/hour); 

)(2 ts i  : speed on lane i at time t at downstream end of road section (km/hour); 

21,nn  : number of lanes at upstream and downstream of road section, respectively. 
 
 
To illustrate the property of this new crash precursor, Equation 1 is applied to a section of 

the Gardiner Expressway in Toronto, Canada for a 24-hour period. Q is calculated at every 20-
second interval with t∆  assumed to be 2 minutes. As shown in Figure 1, Q clearly shows the 
pattern of typical queue formation and dissipation in daily traffic. Particularly, Q characterizes 
high chances of queue propagation during afternoon peak period. On the other hand, Q is 
generally small and constant during non-peak period when a queue is highly unlikely to form. 
 
 
Exposure 

As explained in the model structure, exposure is included to reflect frequency of traffic events that 
create chances of crash occurrence. In this study, exposure is described as the product of daily 
traffic volume and the length of each road section. These are split into the volume-kilometers 
according to the probabilities of occurrence of crash precursor values and external control factors 
in daily traffic. However, the weather was excluded in external control factors since the available 
weather data do not adequately reflect the actual weather condition at the time of crashes.  
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By definition, crash rate is crash frequency divided by exposure. Thus, exposure must be 
determined for a given crash frequency. This means that individual crashes are classified into 
generalized crash types based on their common characteristics. In this study, the crash types are 
characterized by typical traffic conditions when crashes occurred, such as (1) crash precursor 
values prior to crash occurrence; (2) congestion level (peak/off-peak period) at the time of 
crashes; and (3) road section type (straight section or merge/diverge section), traffic volume, and 
length of road section type where crashes occurred. For the ease of determining the exposure for 
given crash precursor values, precursors should be categorized into a number of discrete levels. 
For this reason, precursors are expressed in categorical variables instead of continuous variables 
in the model. For example, the exposure for crash type A can be estimated based on the levels of 
crash precursors, road geometry and congestion level corresponding to crash type A as shown in 
Equation 2. 

 
 
EXPA = p(CVSA)⋅ p(DA)⋅ p(QA)⋅p(PA)⋅VA⋅LA⋅T      (2) 
 
where, 
              EXPA : exposure for crash type A; 
       CVSA , DA , QA:  : the levels of CVS, D and Q for crash type A, respectively; 
 p(CVSA), p(DA), p(QA) : probabilities of the occurrence (or proportions) of the levels 

CVSA, DA and QA in normal daily traffic, respectively; 
              p(PA) : proportion of volume during peak/off-peak periods in normal 

daily traffic; 
                VA : average annual daily traffic of the road section (vehicles/day) for 

crash type A; 
                LA : length of road section type (km) for crash type A; 
                T : total observation time period (number of days). 

 
 
Model Specification 

To analyze the effects of crash precursors and external control factors on crash potential, a 
probabilistic model of crash prediction was developed. The model estimates the relationship 
between crash frequency and the variables discussed in previous sections.  

In this study, an aggregate log-linear model is developed since it allows us to investigate 
the nature of the relationship between selected precursors and frequency of crashes adjusted by 
the appropriate level of exposure. The log-linear model in this study has only a limited number of 
parameters instead of all possible parameters to achieve a parsimonious representation of the data. 
In this analysis, a first-order log-linear model of crash prediction was developed as follows.  

As Jovanis and Chang (9) suggested, the multiplicative model has the following 
advantages over the additive (linear) model; 1) it can describe a non-linear relationship between 
mutually independent variables and, 2) it can avoid the problem of negative-value prediction. 
Thus, the crash rate can be described in the following functional form: 
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Crash Rate = ( ))()()()()( mPlRkQjDiCVSf
EXP

F
λλλλλθ

β
⋅⋅⋅⋅⋅=    (3) 

 
where, 
     F  : the expected number of crashes over the analysis time frame; 
  EXP  : the exposure in vehicle-kilometers of travel; 
    β  : the parameter for the exposure; 
    θ  : constant; 
 )(iCVSλ  : effect of the crash precursor variable CVS having i levels; 

  )( jDλ  : effect of the crash precursor variable D having j levels; 

  )(kQλ  : effect of the crash precursor variable Q having k levels; 

  )(lRλ  : effect of road geometry (control factor) having l levels. 

  )(mPλ  : effect of time of day (control factor) having m levels; 

 
 
It should be noted that crash precursors and external control factors are categorical 

variables whereas exposure is continuous variable. To express the above equation in a linear 
function of independent variables, the factors should be converted to logarithmic terms as follows: 
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To estimate the parameters in Equation 4, the model is calibrated for actual crash data 

using the maximum likelihood estimate (MLE) method. The MLE method runs an iterative 
process to fit the estimated data to the observed data. This fitting process continues until the 
difference between the current and previous estimates converges to the pre-specified error level. 

 
 

MODEL CALIBRATION 

This section describes the data used for the calibration of the model and suggests the methods to 
determine several important parameters to calculate crash precursors such as 1) actual time of 
crash, 2) observation time slice duration and 3) number of categories and boundary values for 
each category of crash precursors. 
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Description of Data 

To calibrate the proposed model, this study used incident logs and traffic flow data extracted from 
loop detectors along a 10-km stretch of the Gardiner Expressway in Toronto, Canada. A total of 
38 loop detector stations are located along this stretch of freeway as shown in Figure 2. The data 
were collected for weekdays over a 13-month period from January 1998 to January 1999. A total 
of 234 crashes were confirmed by operators at the traffic control center on this section of the 
roadway during the study period. The crashes on ramps were not considered because they are 
likely to be more influenced by site-specific characteristics such as geometric design and traffic 
operation (9). 
 
 
Determination of Actual Time of Crash 

In this study, the actual time of crash (t*) was estimated from the analysis of changes in detector 
speed profiles. To illustrate the method of estimation, the change of speed on the road section 
between two loop detectors upstream and downstream of the crash site is described on a time-
space diagram as shown in Figure 3.  

The figure shows that before the crash occurs at the location marked by “X” between a 
pair of loop detectors, all individual cars are assumed to travel at the speed in normal traffic 
condition (sn) as indicated by arrows. After the crash occurs at “X” (separated by d* from 
upstream detector) at time t*, the vehicles upstream of the crash site experience delays and their 
speed suddenly drops to speed in the congested queue (sq) assuming that sq is uniform. On the 
other hand, the speed of vehicles downstream of the crash site increases to sf due to a decrease in 
volume. As forward-moving shock wave (u) passes over the downstream detector at time td and 
backward-moving shock wave (ω) passes over the upstream detector at time tu, the transition of 
speed can be observed at the location of both detectors as shown in the two figures below the 
time-space diagram. 

From these figures, we observed that it was normally easier to detect tu than td since there 
were more noticeable changes in speed at upstream detector than downstream detector. This is 
because the impact of a queue formed by lane blockages on traffic flow disruption is more severe 
than the impact of the reduction in volume downstream of the crash site. Also since precursors 
represent the traffic condition before vehicles reach the crash site, we need to observe the 
condition immediately upstream of the crash site. Thus, tu was used as a surrogate measure of t*. 

To evaluate the accuracy of tu in estimating t*, the expected error caused by the travel 
time of backward-moving shock wave ( = tu - t* ) can be calculated as follows. If the crashes are 
likely to occur equally at any point of a road section having the length of n unit (i.e. the 
probability of crash occurrence at any point is the same), the expected location of crashes is 
estimated by Equation 5.  
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Also, the past studies observed that the speed of backward-moving shock waves ranges 
from 10 km/hr to 30 km/hr on urban freeways (10,11,12,13,14). In this study, the average speed 
of backward-moving shock wave (ω ) is assumed to be 20 km/hr. For example, if the length of 
the section is 500 meters which is a typical spacing of detectors on urban freeways, the expected 
error (ε) can be calculated as follows: 

 
 

[ ] [ ]
45

km/hour 20

km 25.02/5.0

][

*
* ====−=

ωω
ε

E

dE
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Considering the fact that typical polling intervals of loop detectors are 20~30 seconds, the 

expected errors are only 2~3 polling intervals. Due to relatively low expected errors, this study 
assumes that the errors do not significantly affect the calculation of crash precursors and tu can be 
used as a good estimate of t*.  
 

Determination of Observation Time Slice Duration 

In our previous study (3), observation time slice duration (∆t) prior to crash occurrence was 
assumed to be 5 minutes. However, this duration was arbitrarily chosen on the basis of subjective 
judgment and it was not obtained from empirical results. In this study, a more objective method 
was developed to determine ∆t. The premise of the method is that ∆t should be chosen to 
maximize the difference between precursor values calculated for crash cases and non-crash cases. 
For the analysis, crash precursors (CVS, D and Q) were calculated for the sample of 234 crash 
cases and 234 non-crash cases. Non-crash cases contain the data collected at the same road 
sections for the same time periods under the same weather condition as crash cases, but in 
different days when crashes did not occur. In this way, other traffic environmental factors such as 
road geometry, weather and typical traffic pattern are assumed to be controlled.  

The objective of this analysis is to identify ∆t which maximizes the difference in crash 
precursor values between crash and non-crash cases. Total difference can be directly obtained 
from the sum of absolute differences in precursor values between the two cases. However, since 
the variation of speed (CVS) tends to increase with ∆t, the “standardized” differences must be 
used rather than absolute differences. Consequently, the distributions of crash and non-crash cases 
were compared based on the frequency of precursors for given ranges of precursor values. The 
number of intervals within the given ranges were determined such that the frequency of precursors 
is reasonably dispersed. The differences were calculated using the following expression: 
 

 ( )∑
=

−=
I

i
ii ff

1

2     'δ          (7) 

 
where, 
     δ : difference in frequency of precursor values between crash and non-crash cases; 
     I : total number of intervals within a given range; 

ii ff ',  : frequency of precursor values for an interval i in crash and non-crash cases, 

respectively.  
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As a result, it was found that the frequency differences in the three precursor variables (CVS, D 
and Q) between crash and non-crash cases were maximum at ∆t = 8, 3 and 2 minutes, 
respectively, as shown in Figure 4. This implies that the variation of speed (CVS) has relatively a 
longer-term effect on crash potential than D and Q. Although it is uncertain whether the maximum 
value identified within the range (1~20 minutes) actually represents a global maximum, it is hard 
to believe that the traffic condition more than 20 minutes prior to crash occurrence has a 
significant impact on crashes. Thus, the above-mentioned values were chosen as optimal 
observation time slice durations. 

 
 

Categorization of Crash Precursors 

In categorizing crash precursors, we need to define the level of crash precursors based on the 
distribution of normal traffic flow condition in daily traffic. For this purpose, 24-hour traffic data 
on two typical weekdays with clear weather condition when no crash has occurred was extracted 
from loop detectors. As shown in Figure 5, the distribution of precursor values from the 24-hour 
data is substantially different from that of the crash data. The figure shows that the frequency of 
high crash precursor values was relatively higher in the crash data than the 24-hour data. This 
implies that crash precursor values were relatively higher when crashes occurred compared to 
when crashes did not occur. Also, it should be noted that the disparity between the distribution of 
the 24-hour data and that of the crash data is much larger than the disparity between the two 
distributions of the 24-hour data. This indicates that crash precursors are good indicators of 
discriminating between crash and non-crash conditions. 

In the categorization, the number of categories and the boundary values (or proportion of 
each category) must be determined. However, it is difficult to determine these factors objectively 
from the distribution of crash precursor values. Instead, the proposed log-linear model was 
calibrated for different cases of categorization. Then, the performance of the calibrated log-linear 
models was evaluated in terms of 1) overall model fit, 2) the statistical significance of coefficients 
and 3) consistency of coefficients with the order of levels of crash precursors. The categorization 
that produced the best model performance was chosen as the most suitable categorization. 

In this study, the number of categories considered varying from 2 to 4 inclusive. As a rule 
of thumb, total number of cells in a log-linear model is recommended to be less than the number 
of samples used to calibrate the model. Therefore, given that the calibration sample consisted of 
234 observations, more than 4 categories were not considered. For each number of categories (2, 
3 or 4), boundary values for the precursor variables were selected to achieve the specified 
proportions of crash precursors for each category in the 24-hour data under normal traffic 
condition as shown in Table 1. In most cases, the proportion of the highest level was set lower 
than all other lower levels in order to reflect rare occurrence of high-level precursors in normal 
traffic conditions. These proportions will affect the calculation of both crash frequency and 
exposure for each category as defined in Equation 2 and 3. Maximum likelihood estimates of the 
expected crash frequency were obtained through an iterative proportional fitting technique. 

As a result, as the number of categories increases, both log-likelihood ratio and Pearson 
chi-square statistics decrease, which means the model fits better. However, it should be noted that 
this result stems from the fact that as the number of categories increases, the increased number of 
zero cells in a contingency table has a more dominant effect on overall model fit. But it is unclear 
whether these zero cells actually reflect that no crash occurred under the given circumstances or 
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they are the result of missing data. With this uncertainty, increasing the number of categories does 
not necessarily produce a better model.  

For this reason, the statistical significance and consistency of coefficients also need to be 
checked. As a result, for 2 and 4 categories, some of the coefficients were insignificant and also 
they were inconsistent with the order of levels. For instance, low-level precursor has more 
positive impact on crash potential than higher-level precursor. Only for 3 categories, were all the 
coefficients statistically significant at a 95% confidence level and consistent with the order of 
levels in all 9 cases as shown in Table 2. Also, log-likelihood ratio and Pearson chi-square 
statistics were low, and p-values at a 95% confidence level were large. This means that there is no 
significant difference between observed and predicted crash frequency and therefore, the model 
fits the observed data well. This result implies that the performance of the log-linear model is not 
sensitive to our subjective categorization for fixed number of categories. Among 9 different cases 
for 3 categories, it was found that the proportions of 50%(low)-30%(intermediate)-20%(high) 
produced the best model fit (i.e. the lowest log-likelihood ratio and Pearson chi-square). The 
boundary values for each crash precursor in this case are as follows as shown in Table 1: 0.056 
and 0.074 for CVS; 16.4 and 25.8 veh/km for D; and 2.7 and 8.3 km/hr for Q.  

In Table 2, lower coefficients indicate less impact on crash potential with respect to 
aliased cells. This result suggests that higher-level crash precursors contribute to higher crash 
potential than lower-level crash precursors. The control factors such as road geometry and time of 
day also have significant effect on crash potential. The result indicates that crash is more likely to 
occur on the road sections having on-ramp or off-ramp and during peak period. Finally, as 
expected, crash potential increases with exposure. 

 
 

CONCLUSIONS AND RECOMMENDATIONS 

This paper suggests the rational methods by which crash precursors are determined from 
experimental results and also evaluates the performance of the crash prediction model for different 
assumptions of categorized crash precursors. The findings from this study are summarized as 
follows: 

 
1) The main criterion for selecting crash precursors is that the distribution of precursor values for 

traffic conditions when crashes occurred should be significantly different from the distribution 
of precursor values for normal traffic condition.  

 
2) The difference between the speed at the upstream detector and the speed at the downstream 

detector was significantly higher when crashes occurred. This implies that the abrupt transition 
of speed within the road section, i.e. the formation and dissipation of a traffic queue, has 
positive effects on crash occurrence. 

 
3) The time when the speed abruptly drops at the detector station immediately upstream of crash 

site is considered to be a good estimate of actual time of crashes. This speed drop occurs 
when a queue forms after the crash occurrence and the backward-moving shock wave passes 
over the nearest upstream detector station. 
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4) The observation time slice duration (∆t) prior to crash occurrence is determined such that the 
difference in distribution of crash precursor values for given ∆t between crash and non-crash 
cases is maximized. It was found that the optimal observation time slice durations were 
different for each selected crash precursor – i.e. some precursors need to be observed for 
longer time period than other precursors to investigate their impact on crash occurrence. 

 
5) The categorization of crash precursors is determined based on overall fit of crash prediction 

model, the statistical significance of coefficients and consistency of coefficients with the order 
of levels of crash precursors. In the analysis, three categories appear to be the most suitable to 
explain differential impact of precursors in different levels on crash potential. In case of three 
categories, the model estimates showed consistent results for any combination of boundary 
values. Thus the performance of the model was stable, not being affected by subjective 
categorization of crash precursors. 

 
Having calibrated the model for historical crash data, the proposed model can be used to 

predict crash potential in real-time using the current traffic flow data. For the next step, we need 
to apply this model to actual traffic condition and examine how the crash potential estimated by 
the model can help reduce the crash potential and improve the safety of freeway traffic.  

Since we can predict the crash potential on a real-time basis using the proposed model, we 
can also implement the automated real-time countermeasures to reduce crash potential such as 
variable speed limit. This certainly saves manual human intervention and effectively controls the 
traffic flow to prevent crashes. For the systematic implementation of real-time countermeasures, it 
is necessary to classify crash potential into different levels of risk tolerance. For example, variable 
speed limit is in operation only when the estimated real-time crash potential exceeds the specified 
threshold value of risk tolerance.  

Furthermore, we need to assess the safety benefit of an automated traffic control using the 
proposed crash prediction model. For one thing, the simulation can be performed before and after 
implementing the automated traffic control. From the simulation results, the impact of a change in 
driver behavior caused by this external control on the variation of traffic flow and real-time crash 
potential can be examined. This before-and-after study evaluates whether this automated traffic 
control can effectively reduce the overall crash potential on freeways for given conditions.  
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TABLE 1  Cases of Categorization and Boundary Values 

CVS D (veh/km) Q (km/hr) No. of 
Categories 

Assumed 
Proportions* B1** B2** B3** B1 B2 B3 B1 B2 B3 

2 Categories 50/50 
60/40 
70/30 
80/20 

0.056 
0.060 
0.065 
0.074 

- 
- 
- 
- 

- 
- 
- 
- 

16.4 
18.0 
20.3 
25.8 

- 
- 
- 
- 

- 
- 
- 
- 

2.7 
3.5 
4.7 
8.3 

- 
- 
- 
- 

- 
- 
- 
- 

3 Categories 20/60/20 
20/50/30 
30/50/20 
33/33/33 
40/40/20 
40/30/30 
50/30/20 
50/20/30 
60/20/20 

0.046 
0.046 
0.048 
0.049 
0.052 
0.052 
0.056 
0.056 
0.060 

0.074 
0.064 
0.074 
0.063 
0.074 
0.064 
0.074 
0.064 
0.074 

- 
- 
- 
- 
- 
- 
- 
- 
- 

13.2 
13.2 
14.2 
14.5 
15.2 
15.2 
16.4 
16.4 
18.0 

25.8 
20.3 
25.8 
19.4 
25.8 
20.3 
25.8 
20.3 
25.8 

- 
- 
- 
- 
- 
- 
- 
- 
- 

1.1 
1.1 
1.6 
1.7 
2.1 
2.1 
2.7 
2.7 
3.5 

8.3 
4.7 
8.3 
4.2 
8.2 
4.7 
8.3 
4.7 
8.3 

- 
- 
- 
- 
- 
- 
- 
- 
- 

4 Categories 40/20/20/20 
30/30/20/20 
30/20/30/20 
25/25/25/25 
20/20/40/20 
20/30/30/20 
20/40/20/20 

0.052 
0.048 
0.048 
0.047 
0.046 
0.046 
0.046 

0.060 
0.060 
0.056 
0.056 
0.052 
0.056 
0.060 

0.074 
0.074 
0.074 
0.068 
0.074 
0.074 
0.074 

15.2 
14.2 
14.2 
13.6 
13.2 
13.2 
13.2 

18.0 
18.0 
16.4 
16.4 
15.2 
16.4 
18.0 

25.8 
25.8 
25.8 
22.3 
25.8 
25.8 
25.8 

2.1 
1.6 
1.6 
1.3 
1.1 
1.1 
1.1 

3.5 
3.5 
2.7 
2.7 
2.1 
2.7 
3.5 

8.3 
8.3 
8.3 
5.9 
8.3 
8.3 
8.3 

*The first number denotes the percentage of the lowest level, the second number the percentage of the second 
lowest level, and so on.  
**B1 denotes the boundary value between the lowest level and the second lowest level for given crash precursor, B2 
the boundary value between the second lowest level and the third lowest level, and so on. 
 
 
Sample Illustration: 
 
For example, in the case of 3 categories, 20/60/20 indicates that when the crash precursor values are ordered from 
the smallest to the largest, the first 20 percentile of crash precursor values represents “low” level, the next 60 
percentile “intermediate” level and the remaining 20 percentile “high” level. The boundary values between “low” 
and “intermediate” levels for CVS, D and Q are 0.046, 13.2 and 1.1, respectively. The boundary values between 
“intermediate” and “high” levels for CVS, D and Q are 0.074, 25.8 and 8.3, respectively. Thus, the categories of 
crash precursor values can be determined as follows: 
 
Low level: CVS  ≤ 0.046   D  ≤ 13.2  Q  ≤ 1.1 
Intermediate level:  0.046 < CVS ≤ 0.074  13.2 < D ≤ 25.8  1.1 < Q ≤ 8.3 
High level:  CVS  > 0.074   D > 25.8  Q > 8.3 
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TABLE 2  Estimated Parameters of Log-linear Model (Three Categories) 

Assumed Proportions (Low/Intermediate/High) Parameter 
20/60/20 20/50/30 30/50/20 33/33/33 40/40/20 40/30/30 50/30/20 50/20/30 60/20/20 

θ  2.8920 3.0353 2.9050 0.5366 2.8272 1.0898 2.6569 2.5347 2.8191 
λCVS=1 -4.9018 -4.4238 -3.2432 -2.8002 -3.0481 -3.6619 -3.3065 -3.2087 -2.3741 
λCVS=2 -1.4274 -2.3140 -1.7207 -1.7216 -2.0652 -1.9155 -1.8415 -1.9522 -1.7157 
λCVS=3* 0 0 0 0 0 0 0 0 0 
λD=1 -1.3901 -1.4572 -1.4367 -1.4831 -1.7390 -2.7063 -2.3797 -2.3627 -0.9045 
λD=2 -0.3733 -1.7751 -0.5753 -1.1818 -0.9418 -1.1090 -0.7088 -0.8791 -0.5833 
λD=3* 0 0 0 0 0 0 0 0 0 
λQ=1 -2.7247 -2.5041 -2.1406 -2.0095 -2.1778 -3.0160 -2.6859 -2.6107 -1.6682 
λQ=2 -1.0554 -2.2371 -1.3869 -1.8993 -1.7864 -1.9362 -1.4794 -1.9960 -1.4076 
λQ=3* 0 0 0 0 0 0 0 0 0 
λR=0 -0.4171 -0.8405 -0.5613 -2.7014 -0.9062 -2.5029 -0.9916 -1.1961 -0.4728 
λR=1* 0 0 0 0 0 0 0 0 0 
λP=0 -0.4604 -0.5777 -0.4877 -1.0353 -0.5468 -0.9743 -0.4929 -0.6406 -0.4368 
λP=1* 0 0 0 0 0 0 0 0 0 
β  
(Exposure 
in 109 veh-
km) 

0.0075 0.0367 0.0228 0.1502 0.0710 0.1715 0.0964 0.0682 0.0171 

Likelihood 
Ratio 

87.4 62.9 85.7 57.2 62.8 54.6 44.5 66.6 106.27 

p-value 
(α=0.05) 

0.77 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.27 

* This cell serves as the basis against which log-linear parameters are applied to obtain crash frequency for any 
combination of crash precursors. The cell is called the “aliased” cell. 
 

Description of Parameters: 
θ : Constant; 

λCVS=1, λCVS=2, λCVS=3:
 Effect of CVS (=1 (low), =2 (intermediate), =3 (high)); 

λD=1, λD=2, λD=3,: Effect of D (=1 (low), =2 (intermediate), =3 (high)); 
λQ=1, λQ=2, λQ=3: Effect of Q (=1 (low), =2 (intermediate), =3 (high)); 
λR=0, λR=1: Effect of road geometry (=0 (straight section), =1 (merge/diverge section)); 
λP=0, λP=1: Effect of time of day (=0 (off-peak), =1 (peak)); 
β : Coefficient for exposure. 

 
Sample Calculation: 
 
At current time t* (during peak period), if CVS(t*) = 0.04, D(t*) = 10 veh/km, and Q(t*) = 1 km/hr, then the crash 
potential on the merge road section with exposure of 1×109 vehicles-km of travels over a 13-month period can be 
estimated as follows: 
 
If the proportions of crash precursors are assumed to be 20/60/20, categories for CVS, D, and Q are 1 (low level) as 
the values above are lower than the boundary values between low level and intermediate level. 
 
     F(t*) = exp(θ + λCVS=1 + λD=1 + λQ=1 + λR=1 + λP=1+ β⋅ln(EXP))  
 = exp(2.8920 – 4.9018 – 1.3901 – 2.7247 + 0 + 0 + 0.0075⋅ln(1)) = 2.2 × 10-3 crashes 

 
Crash Potential (t*) = F(t*) / EXP = 2.2 × 10-3 / 109 = 2.2 × 10-12 crashes/veh-km. 
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FIGURE 1  Profile of queue formation precursor (Q) in typical daily traffic. 
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Note: 
1. The arrows pointing outward indicate off-ramps and the arrows pointing inward indicate on-ramps. 
2. The letters inside the squares denote the station ID. 
3. The numbers shown above or below the station ID are the number of lanes. 
4. The numbers shown between two successive detectors are the distance in meter. 
5. Shaded detector stations are the stations where traffic is influenced by merging or diverging vehicles. 
6. The bold numbers shown above or below the distance are total number of crashes in 13 months. 

 
FIGURE 2  Location of loop detector stations on Gardiner Expressway. 
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FIGURE 3  Illustration of speed changes after crash occurrence. 

X 

tu
 

ω 

td t* 

d* 
sq

 

sf 

u 

Time 

Distance 

sn Upstream 
Detector 

Downstream 
Detector 

ε 



Lee, Hellinga, and Saccomanno 

 

20

 

CVS

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation Time Slice Duration (minutes)

F
re

q
u

en
cy

 D
if

fe
re

n
ce

 

8 minutes

 

D

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation Time Slice Duration (minutes)

F
re

q
u

en
cy

 D
if

fe
re

n
ce

3 minutes

 

Q

0
100
200

300
400
500
600
700

800
900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation Time Slice Duration (minutes)

F
re

q
u

en
cy

 D
if

fe
rn

ce

2 minutes

 
FIGURE 4  Determination of observation time slice duration. 
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FIGURE 5  Distribution of crash precursors in two 24-hour data and crash data. 


